Hamilton Circuits/Graphs

Teacher Incharge:
Adil Mudasir

Hamilton Circuits

Dodecahedron puzzle and it equivalent graph

Is there a circuit in this graph that passes through each vertex exactly once?

Hamilton Circuits

Yes; this is a circuit that passes through each vertex exactly once.

Hamilton Paths and

Circuits

William Rowan

- Euler paths and circuits contained every edge only once. Now we look at paths and circuits that contain every vertex exactly once.
- William Hamilton invented the Icosian puzzle in 1857. It consisted of a wooden dodecahedron (with 12 regular pentagons as faces), illustrated in (a), with a peg at each vertex, labeled with the names of different cities. String was used to used to plot a circuit visiting 20 cities exactly once
- The graph form of the puzzle is given in (b).

(a)

(b)

Definition: A simple path in a graph G that passes through every vertex exactly once is called a Hamilton path, and a simple circuit in a graph G that passes through every vertex exactly once is called a Hamilton circuit.

Finding Hamilton Circuits

(c) The McGraw-Hill Companies, Inc. all rights reserved.

Which of these three figures has a Hamilton circuit?
Or, if no Hamilton circuit, a Hamilton path?

Finding Hamilton Circuits

(c) The McGraw-Hill Companies, Inc. all rights reserved.

G_{2}

- G_{1} has a Hamilton circuit: a, b, c, d, e, a
- G_{2} does not have a Hamilton circuit, but does have a Hamilton path: a, b, c, d
- G_{3} has neither.

Euler versus Hamilton

Property	Euler	Hamilton
Repeated visits to a given node allowed?	Yes	No
Repeated traversals of a given edge allowed?	No	No
Omitted nodes allowed?	No	No
Omitted edges allowed?	No	Yes

Sufficient Conditions for Hamiltonian Circuits

- Unlike for an Euler circuit, no simple necessary and sufficient conditions are known for the existence of a Hamiltonian circuit.
- However, there are some useful sufficient conditions. We describe two of these now.
- NOTE: These are not necessary conditions for a graph to be a hamiltonian

Dirac's Theorem:

If G is a simple graph with $n \geq 3$ vertices such that the degree of every vertex in G is $\geq n / 2$, then G has a Hamilton circuit.

Ore's Theorem: I
$\mathrm{f} G$ is a simple graph with $n \geq 3$ vertices such that $\operatorname{deg}(u)+\operatorname{deg}($

Properties to look for ...

- No vertex of degree 1
- No cut edges
- If a node has degree 2 , then both edges incident to it must be in any Hamilton circuit.
- No smaller circuits contained in any Hamilton circuit (the start/endpoint of any smaller circuit would have to be visited twice).

Show that neither graph displayed below has a Hamilton circuit.

G

H

There is no Hamilton circuit in G because G has a vertex of degree one: e.

Now consider H. Because the degrees of the vertices a, b, d, and e are all two, every edge incident with these vertices must be part of any Hamilton circuit. No Hamilton circuit can exist in H, for any Hamilton circuit would have to contain four edges incident with c, which is impossible.

Time Complexity

The best algorithms known for finding a Hamilton circuit in a graph or determining that no such circuit exists have exponential worst-case time complexity (in the number of vertices of the graph).
Finding an algorithm that solves this problem with polynomial worst-case time complexity would be a major accomplishment because it has been shown that this problem is NP-complete. Consequently, the existence of such an algorithm would imply that many other seemingly intractable problems could be solved using algorithms with polynomial worst-case time complexity.

Applications of Hamilton Paths and

 Circuits- Applications that ask for a path or a circuit that visits each intersection of a city, each place pipelines intersect in a utility grid, or each node in a communications network exactly once, can be solved by finding a Hamilton path in the appropriate graph.
- The famous traveling salesperson problem (TSP) asks for the shortest route a traveling salesperson should take to visit a set of cities. This problem reduces to finding a Hamilton circuit such that the total sum of the weights of its edges is as small as possible.

